Event Information

  • The RemovePermission event in AWS Lambda refers to the action of removing a permission that was previously granted to an entity (such as an AWS service or an AWS account) to invoke a Lambda function.
  • This event is triggered when the removePermission API operation is called to revoke the permission associated with a specific function and statement ID.
  • The RemovePermission event is useful for tracking and auditing changes to the permissions granted to invoke a Lambda function, providing visibility into who removed the permission and when it was done.

Examples

  1. Unauthorized access: If the RemovePermission operation is misused or misconfigured, it can potentially remove permissions that are critical for securing your Lambda function. This could result in unauthorized access to your function and its associated resources.

  2. Data exposure: Removing permissions without proper understanding of the potential impact can lead to unintended data exposure. For example, if a permission allowing access to sensitive data is mistakenly removed, it could result in unauthorized users gaining access to that data.

  3. Function disruption: Removing permissions without considering the dependencies and integrations of your Lambda function can disrupt its normal operation. For instance, if a permission required for a specific integration or communication with other services is removed, it could cause the function to fail or behave unexpectedly.

Remediation

Using Console

  1. Identify the specific issue or vulnerability in the AWS Lambda function by reviewing the event logs or security findings in the AWS console.

  2. Determine the appropriate remediation steps based on the examples provided in the previous response:

    a. Example 1: Excessive permissions for Lambda function

    • Access the AWS Lambda console.
    • Select the specific Lambda function that has excessive permissions.
    • Click on the “Permissions” tab.
    • Review the existing permissions and identify any unnecessary or excessive permissions.
    • Remove the unnecessary permissions by clicking on the “X” icon next to each permission.
    • Click on “Save” to apply the changes.

    b. Example 2: Insecure environment variables in Lambda function

    • Access the AWS Lambda console.
    • Select the specific Lambda function that has insecure environment variables.
    • Click on the “Configuration” tab.
    • Scroll down to the “Environment variables” section.
    • Review the existing environment variables and identify any sensitive information.
    • Remove or encrypt any sensitive environment variables.
    • Click on “Save” to apply the changes.

    c. Example 3: Unencrypted data storage in Lambda function

    • Access the AWS Lambda console.
    • Select the specific Lambda function that has unencrypted data storage.
    • Click on the “Configuration” tab.
    • Scroll down to the “Environment variables” section.
    • Review the existing environment variables and identify any variables related to data storage.
    • Ensure that the data storage variables are configured to use encrypted storage options such as AWS KMS.
    • Click on “Save” to apply the changes.
  3. Monitor the AWS Lambda function after applying the remediation steps to ensure that the issues have been resolved and the function is functioning as expected. Regularly review the event logs and security findings to identify any new issues or vulnerabilities that may arise.

Using CLI

  1. Enable VPC configuration for AWS Lambda:

    • Use the update-function-configuration command to update the Lambda function’s configuration.
    • Specify the --vpc-config parameter with the appropriate VPC configuration details, such as SubnetIds and SecurityGroupIds.
    • Example command: aws lambda update-function-configuration --function-name <function-name> --vpc-config SubnetIds=<subnet-ids>,SecurityGroupIds=<security-group-ids>
  2. Enable encryption at rest for AWS Lambda function code:

    • Use the update-function-configuration command to update the Lambda function’s configuration.
    • Specify the --kms-key-arn parameter with the ARN of the KMS key to be used for encryption.
    • Example command: aws lambda update-function-configuration --function-name <function-name> --kms-key-arn <kms-key-arn>
  3. Enable AWS CloudTrail logging for AWS Lambda:

    • Use the update-function-configuration command to update the Lambda function’s configuration.
    • Specify the --tracing-config parameter with the appropriate tracing configuration details, such as Mode set to Active.
    • Example command: aws lambda update-function-configuration --function-name <function-name> --tracing-config Mode=Active

Using Python

  1. Enable VPC configuration for AWS Lambda:

    • Use the update-function-configuration API to add the VPC configuration to the Lambda function.
    • Specify the VPC ID, subnet IDs, and security group IDs in the API call.
    • Here’s an example Python script to enable VPC configuration for a Lambda function:
    import boto3
    
    lambda_client = boto3.client('lambda')
    
    def enable_lambda_vpc_config(function_name, vpc_id, subnet_ids, security_group_ids):
        response = lambda_client.update_function_configuration(
            FunctionName=function_name,
            VpcConfig={
                'SubnetIds': subnet_ids,
                'SecurityGroupIds': security_group_ids
            }
        )
        print(f"VPC configuration enabled for Lambda function {function_name}")
    
    enable_lambda_vpc_config('my-lambda-function', 'vpc-12345', ['subnet-12345', 'subnet-67890'], ['sg-12345'])
    
  2. Enable AWS CloudTrail logging for AWS Lambda:

    • Use the update-function-configuration API to enable CloudTrail logging for the Lambda function.
    • Set the TracingConfig parameter to 'Active' to enable CloudTrail logging.
    • Here’s an example Python script to enable CloudTrail logging for a Lambda function:
    import boto3
    
    lambda_client = boto3.client('lambda')
    
    def enable_lambda_cloudtrail_logging(function_name):
        response = lambda_client.update_function_configuration(
            FunctionName=function_name,
            TracingConfig={
                'Mode': 'Active'
            }
        )
        print(f"CloudTrail logging enabled for Lambda function {function_name}")
    
    enable_lambda_cloudtrail_logging('my-lambda-function')
    
  3. Enable AWS X-Ray tracing for AWS Lambda:

    • Use the update-function-configuration API to enable X-Ray tracing for the Lambda function.
    • Set the TracingConfig parameter to 'Active' to enable X-Ray tracing.
    • Here’s an example Python script to enable X-Ray tracing for a Lambda function:
    import boto3
    
    lambda_client = boto3.client('lambda')
    
    def enable_lambda_xray_tracing(function_name):
        response = lambda_client.update_function_configuration(
            FunctionName=function_name,
            TracingConfig={
                'Mode': 'Active'
            }
        )
        print(f"X-Ray tracing enabled for Lambda function {function_name}")
    
    enable_lambda_xray_tracing('my-lambda-function')