Event Information

  • The v1.compute.targetHttpsProxies.delete event in GCP for Compute indicates that a target HTTPS proxy has been deleted.
  • This event signifies that the specified target HTTPS proxy, which is responsible for forwarding HTTPS traffic to a backend service, has been removed from the GCP environment.
  • It is important to note that deleting a target HTTPS proxy will result in the termination of any existing connections and the removal of associated configurations.

Examples

  1. Unauthorized deletion: If security is impacted with v1.compute.targetHttpsProxies.delete in GCP for Compute, one example could be an unauthorized user gaining access to the API and deleting target HTTPS proxies. This could result in the disruption of HTTPS traffic to the backend services, potentially leading to service downtime or data breaches.

  2. Misconfiguration: Another example could be a misconfiguration in the access control policies for the API. If the permissions are not properly set, it could allow unintended users or applications to delete target HTTPS proxies, compromising the security of the infrastructure.

  3. Malicious activity: A third example could be a malicious actor exploiting a vulnerability in the API or the underlying infrastructure to delete target HTTPS proxies. This could be part of a larger attack aimed at disrupting services or gaining unauthorized access to sensitive data. Regular monitoring and security measures are essential to detect and prevent such activities.

Remediation

Using Console

To remediate the issues mentioned in the previous response for GCP Compute using the GCP console, you can follow these step-by-step instructions:

  1. Enable VPC Flow Logs:

    • Go to the GCP Console and navigate to the VPC network page.
    • Select the VPC network where you want to enable flow logs.
    • Click on “Edit” at the top of the page.
    • Scroll down to the “Flow logs” section and click on “Enable flow logs”.
    • Configure the desired flow log settings, such as the filter, destination, and sampling rate.
    • Click on “Save” to enable VPC flow logs for the selected VPC network.
  2. Enable CloudTrail for GCP:

    • Go to the GCP Console and navigate to the CloudTrail page.
    • Click on “Create a new trail” to create a new CloudTrail configuration.
    • Provide a name for the trail and select the GCP project where you want to enable CloudTrail.
    • Choose the desired settings for the trail, such as the storage location, log file validation, and event selectors.
    • Click on “Create” to enable CloudTrail for the selected GCP project.
  3. Enable Security Center for GCP:

    • Go to the GCP Console and navigate to the Security Command Center page.
    • Click on “Enable Security Command Center” to enable Security Center for your GCP project.
    • Follow the on-screen instructions to set up Security Center, including enabling the necessary APIs and granting required permissions.
    • Once Security Center is enabled, you can access the Security Command Center dashboard to view and manage security findings and recommendations for your GCP resources.

Please note that the exact steps and options may vary slightly depending on the specific version of the GCP console and the user’s access permissions. It is always recommended to refer to the official GCP documentation for the most up-to-date and accurate instructions.

Using CLI

  1. Enable VPC Flow Logs for GCP Compute instances:

    • Use the gcloud compute instances update command to enable VPC Flow Logs for a specific instance:
      gcloud compute instances update INSTANCE_NAME --enable-network-endpoint-logging
      
  2. Restrict SSH access to GCP Compute instances:

    • Use the gcloud compute firewall-rules update command to update the firewall rule for SSH access:
      gcloud compute firewall-rules update FIREWALL_RULE_NAME --source-ranges=IP_RANGE --allow=tcp:22
      
  3. Implement disk encryption for GCP Compute instances:

    • Use the gcloud compute disks create command to create an encrypted disk:
      gcloud compute disks create DISK_NAME --size=SIZE --type=DISK_TYPE --encryption-key=KEY_NAME
      

Using Python

To remediate the issues mentioned in the previous response for GCP Compute using Python, you can use the following approaches:

  1. Enforce secure OS configurations:

    • Use the google-cloud-sdk library to retrieve the list of GCP Compute instances.
    • Iterate through each instance and check the OS configuration settings.
    • Use the googleapiclient library to update the instance settings and enforce secure configurations.
    • Example Python script:
      from google.cloud import compute_v1
      
      def enforce_secure_os_config(project_id):
          compute_client = compute_v1.InstancesClient()
          instances = compute_client.list(project=project_id)
          
          for instance in instances:
              # Check OS configuration settings
              if instance.os_config.secure_boot == False:
                  # Update instance settings to enforce secure boot
                  instance.os_config.secure_boot = True
                  compute_client.update(project=project_id, instance=instance)
      
  2. Implement network security controls:

    • Use the google-cloud-sdk library to retrieve the list of GCP Compute instances.
    • Iterate through each instance and check the network security controls.
    • Use the googleapiclient library to update the instance settings and implement necessary network security controls.
    • Example Python script:
      from google.cloud import compute_v1
      
      def implement_network_security_controls(project_id):
          compute_client = compute_v1.InstancesClient()
          instances = compute_client.list(project=project_id)
          
          for instance in instances:
              # Check network security controls
              if instance.network_config.firewall_rules == []:
                  # Add necessary firewall rules
                  firewall_rule = compute_v1.FirewallRule(...)
                  compute_client.insert(project=project_id, firewall_rule=firewall_rule)
      
  3. Enable logging and monitoring:

    • Use the google-cloud-sdk library to retrieve the list of GCP Compute instances.

    • Iterate through each instance and enable logging and monitoring.

    • Use the googleapiclient library to update the instance settings and enable necessary logging and monitoring.

    • Example Python script:

      from google.cloud import compute_v1
      
      def enable_logging_and_monitoring(project_id):
          compute_client = compute_v1.InstancesClient()
          instances = compute_client.list(project=project_id)
          
          for instance in instances:
              # Enable logging and monitoring
              instance.logging_config.enable = True
              instance.monitoring_config.enable = True
              compute_client.update(project=project_id, instance=instance)